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Design of filters in a one-dimensional tight-binding system

Bruno Lindquist
Department of Physics and Measurement Technology, Linko¨ping University, SE-581 83 Linko¨ping, Sweden

~Received 18 October 2000; published 12 April 2001!

We show how to design one-dimensional systems that in the transmission through a finite potential barrier,
in a predetermined way, discriminate between monochromatic waves depending on their wave number. These
systems, described by the on-site tight-binding equation, act as filters of different types, with adjustable pass
and stop bands. The use of these filters for discrimination of linear wave packets depending on their different
velocities is illustrated, and we also comment on the influence of an added nonlinearity.
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I. INTRODUCTION

We consider here the on-site tight-binding equation w
constant nearest-neighbor hopping

2cn112cn211Vncn5Ecn , ~1!

wheren is the site index,Vn is the on-site potential, and th
hopping integral is normalized to21. This equation is
equivalent to a discretized time-independent Schro¨dinger
equation. This ubiquitous model and the connection betw
the nature of the eigenstates, the spectrum of allowed e
gies, the physical properties, and the choice ofVn as random
@1# or deterministic aperiodic@2# have been most thoroughl
studied. In this paper we will study the possibility of co
structing a system obeying Eq.~1! that act as a discriminato
of Bloch waves specified by certain wave numbersk. First
the construction of a band-reject~BR! filter with low trans-
mission in an intervalk1<k<k2 ~the stopband! and high
transmission outside this interval~the passbands! will be
demonstrated. Also the transmission curve of a filter with
inverse characteristic, a band-pass~BP! filter, as well as fil-
ters with low-pass~LP! and high-pass~HP! characteristics
will be shown. The discrimination of wave packets depen
ing on their different velocities is illustrated.

The idea of constructing a filter of a certain type is bas
on the reflection of an initial plan wave}ei (2pkn2Ekt) by the
Fourier componentsṼ(kp) of the lattice on-site potential
~The definition of the discrete Fourier transform DFT, cou
be found in the Appendix A.! Here Ek is the energy of the
wave, whilekp denotes the lattice wave number. The con
bution of kp to the real potentialVn is ~neglecting the nor-
malization! the sum ofṼ(kp) and Ṽ(2kp) @an asterisk de-
notes the complex conjugate, it naturally holds th
Ṽ(2kp)5Ṽ* (kp)#. Pure Bragg reflection (k↔2k) occurs
when ukpu52uku. At this condition the current @J
52 Im(cncn21* )# is periodically changing sign with the pe

riod }1/uṼ(kp)u. With increasing difference betweenk and
the resonance criterion more and morek values are involved
in the scattering process, even if there is only one ini
plane wave and only onekp value in the Fourier expansio
of the potential~a cosine-formed potential!. With more kp
values the problem is in general analytically not solva
even if the potential is periodic. Still worse if one has to ta
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into account the spectral density of a wave packet. But
scattering atukpu>2uku is by far of most importance, if the
extension of the lattice is infinite and there are not too la
values of the on-site potential. We have used this criterion
the construction of different filters adding Fourier comp
nentsṼ(kp) to the lattice on-site potential with amplitude
and phases to give the best total effect on the transmis
curve. If we, however, deal with the transmission through
barrier the borders play an essential role. Too step borde
the entrance and the exit sides of the barrier lead to la
reflections at the borders, resulting in interference, giv
peaks and valleys~ripple! in the transmission curve. With a
barrier size ofN sites, this ripple has the periodDk'1/2N
~cf. the Ramsauer effect! and is not desirable, as we want a
flat characteristic as possible in the stop and pass bands
the wish is to have smooth borders if possible. In Sec. II
transmission of a plane wave is first derived and then s
cessive improvements in the construction of the barrier
investigated. The effects on wave packets are dealt with
Sec. III, where the influence of an added nonlinearity is a
considered. We will in the following use the terminolog
that the ‘‘left’’ is toward the lown side.

II. STATIONARY TRANSMISSION

The system that will be considered here is described
Eq. ~1!, and consists of a finite aperiodic chain~a potential
barrier when 1<n<N), embedded in an infinite periodi
chain withVn[0. We will first study the problem of station
ary transmission through this barrier, when the wave fu
tions outside the barrier are taken as single Bloch wa
specified by a wave numberk. By stationary transmission we
here simply mean that the probabilityucnu2 and the probabil-
ity current are time independent in contrast to the case w
the transmission of a wave packets is studied. WithR0 , R1 ,
andT0 defining the incoming, reflected, and outgoing wa
amplitudes, respectively, we have the following relations

cn5R0ei2pkn1R1e2 i2pkn, n<1,

2cn112cn211Vncn5Ecn , 1<n<N, ~2!

cn5T0ei2pkn1T1e2 i2pkn, N<n,

whereT1[0 in the present context.
©2001 The American Physical Society05-1
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BRUNO LINDQUIST PHYSICAL REVIEW E 63 056605
The relationE522 cos(2pk) is valid for a Bloch wave
outside the barrier and is used also inside the barrier, wh
is motivated by the infinite chain and that Eq.~1! is valid for
all n. In the usual way the transmission coefficientt is de-
fined as

t5
uT0u2

uR0u2
. ~3!

The complex wave functionc gives by Eq.~1! rise to a real
four-dimensional mapping. This mapping can be reduced
a two-dimensional one@3,2# by the use of current conserva
tion @J52 Im(cn cn21* )52uT0u2 sin(2pk)]. By defining the two
quantities

xn5
ucnu2

uT0u2
, yn5

Re~cncn21* !

uT0u2
, ~4!

the reduced mapping will take the form

xn215
1

xn
@yn

21sin2~2pk!#, ;n,

yn2152yn1xn21~Vn212E!, 2<n<N11, ~5!

where the initial conditions arexN1151, yN115cos(2pk).
By iterating Eq.~5! from the output end to the input end o
the barrier and using Eqs.~2! and ~4! the transmission coef
ficient is by Eq.~3! obtained as

t5
4 sin2~2pk!

x11x022y1 cos~2pk!12 sin2~2pk!
. ~6!

First three comments on the general characteristics oft(k):
~1! An inspection of Eq.~6! reveals thatt(k) is unaffected by
the simultaneous substitutionk→0.52k, Vn→2Vn . That
is, Vn→2Vn mirror t(k) in k50.25. ~2! The transmission
curve is the same independent of which side of the bar
the wave is coming from. This is due to the invariance of
Schrödinger equation under time reversal.~See Appendix B
for a derivation of this characteristic.! ~3! From the preceding
two characteristics it follows thatt(k) is symmetric around
k50.25, if the potential is antisymmetric under inversi
with respect to the middle of the barrier (Vn52VN112n). If
N is odd, the middle lattice site must have zero on-site
tential. In the following, we use this definition of an ‘‘ant
symmetric’’ potential.

If we want to design the realVn of the barrier in the way
thatall components of its discrete Fourier transform have
same amplitude~except for the constant one!, this is done as

Vn5 (
p51

@N/2#

Ap sinS 2ppn

N
1fpD , kp5p/N. ~7!

where the upper limitp5N/2 ~for N even! or (N21)/2 ~for
N odd!. Except for the highest componentp5N/2 ~for N
even! the independent random phasesfp are uniformly dis-
tributed in the interval@0, 2p# and the amplitudes are con
stant, i.e.,Ap5A. Whenp5N/2, which corresponds to only
05660
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one component in the DFT~whereas the otherp values cor-
respond to two components!, we, however, takefN/2
56p/2 and AN/25A/2 to get the same amplitude in th
DFT. Note that the constant contribution fromp50 is ex-
cluded from Eq.~7!, giving ^Vn&50. In what follows the
potential is normalized to have the root mean square~rms!
value V5A^Vn

2&. This normalization means that, ifV con-
stant, the amplitude of any component in Eq.~7! changes
approximately asA}1/AN. The Fourier transform method t
obtain the potential has recently@4# been used to give a
power law relationAp

2}1/kp
a . It was found that fora,2 all

one-electron states are localized, but there is a finite rang
energy values with extended eigenstates fora.2.

In Fig. 1 the first illustrative design of a band-reject filt
with stop band 0.15<k<0.2 is shown. From Eq.~7! only the
valueskp52k for k values in the stop band are included
the summation. With changed values of the parameterN
and V the complimentary bandpass filter with passba
0.15<k<0.2 is shown in Fig. 2. Here the correspondin
values ofkp are excluded from the summation. Figures 1~a!

FIG. 1. The transmission coefficientt as a function ofk with the
on-site potential chosen according to Eq.~7! but with only 0.3
<kp<0.4 included in the summation, i.e., a first approximation o
BR-filter with stopband 0.15<k<0.2. The RMS valueV50.1 and
N564. ~a! One single realization with random phasesfp . ~b! The
result after averaging over 100 realizations with randomfp .
5-2
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DESIGN OF FILTERS IN A ONE-DIMENSIONAL . . . PHYSICAL REVIEW E 63 056605
and 2~a! show the large fluctuation in the transmission cur
in single realizations; even with some peaks with nearly p
fect transmission in the supposed stop band in Fig. 2~a!. That
is, the random phasesfp are not good choices although th
averaging over several realizations in Figs. 1~b! and 2~b!
show some desired BR and BP characteristics, respectiv
But, of course, filters cannot rely on averaging; they have
work in every single realization. The averaged characteris
exhibit some interesting features:First, the ripplecaused by
the borders is clearly seen in Fig. 1~b!, while the ripple in
Fig. 2~b! has a smaller amplitude and the average needs t
taken over more realizations to become clearly visible. W
shorter length of the barrier~here N564 andN5512, re-
spectively! the influence of the borders generally increase
the expense of the bulk.Second, the overall transmission in
the different bands is not at all as flat as desired, i.e.,
influence ont(k) depends onkp even if all amplitudesAp are
equal. In large intervals oft and k the relation t(kp/2)
}1/ sin(pkp) is valid. This is reflected in the stopband of th
BP filter and in the passband of the BR filter~although this

FIG. 2. The transmission coefficientt as a function ofk with the
potential chosen according to Eq.~7! but with 0.3<kp<0.4 ex-
cluded from the summation, i.e., a first try to design a BP-filter w
passband 0.15<k<0.2. The RMS valueV50.05 andN5512. ~a!
One single realization with randomfp . The potential could be see
at the top of Fig. 6.~b! The result after averaging over 1000 rea
izations with randomfp . Inserted: An enlargement of a small in
terval showing the ripple caused by the borders.
05660
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feature actually is better studied in potentials with mo
separated peaks in the Fourier transform of the potentia
even with one single Fourier component at a time!. The re-
lation holds if t not too close tot50 or t51, nor must the
wave number be close tok50 ~or k50.5). These conditions
on k mean that the currentJ}sin(2pk), or if a wave packet
the kinetic energy@5# of the packet, must be large compare
to the on-site potential. If not so the case, the wave~or wave
packet! is scattered more independently by the differe
~local! Vn and has no possibility to ‘‘sense’’ theglobal char-
acteristics expressed by the differentṼ(kp).

A better design of the potential in the barrier is thus

Vn5 (
p51

@N/2#

Ap sinS 2ppn

N
1fpD sinS pp

N D , kp5p/N, ~8!

with the different deterministic phases chosen asfp5pp.
This choice of phases makes the potential more focuse
the middle of the barrier~i.e., on the average larger values
uVnu in this region! and makes the borders become mo
smooth and hence cause a reduction of the ripple. As a
effect the potential in the barrier becomes almost antisy
metric, with the result that the transmissiont(k) becomes
even more symmetric aroundk50.25 than with independen
random phasesfp . A linear dependentfp5pC1 , with C1
Þp, just change the point of focusingnf , and does not
change the transmission curve drastically as long asnf is not
near the borders. Figure 3 demonstrates the effect on
transmission curves of the BR and BP filters shown in Fi
1 and 2 when the potential is given by Eq.~8! and the dif-
ferent phases byfp5pp. In these single realizations, th
most remarkable improvement in the characteristics are
haps that the ripple caused by the borders is greatly remo
from the shorter BR filter and in the flattening of the BP filt
characteristic.

When we want to proceed to improve the filter charact
istics, we have to compromise between different qualit

FIG. 3. The transmission curve of a BR-filter~BP-filer! with
stopband~passband! 0.15<k<0.2. The potential is generated a
cording to Eq.~8! and the different phases chosen asfp5pp.
Compare with Fig. 1~2! where the parametersV50.1 ~0.05! and
N564 ~512! are the same as here.
5-3
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BRUNO LINDQUIST PHYSICAL REVIEW E 63 056605
such as high~low! transition in the pass bands~stop bands!,
maximally flat pass bands, and steep sloops int(k) in the
transition between pass bands and stop bands. To dec
the transmission in the stop bands, for a fixed length of
barrier, we want to increase the strengthV of the potential.
This must be done, in a way that the focusing of the poten
to the middle of the barrier is reduced. Otherwise the lar
values ofuVnu in this region with increasingV, lead to in-
creasing interference between thelocal potential barriers.
This, e.g., tends to deteriorate the transmission in the p
bands.~In Fig. 4 the effect of doubling ofV is shown for the
BP filter in Fig. 3.! A way to control the amount of focusin
of the potential is to introduce a nonlinear term in the cho
of the different phases. By numerical investigation of diffe
ent forms offp(p) we have found a simple quadratic for
best suited in most cases:

fp5pp1C2~p2pm,i !
2, ~9!

whereC2 is a constant, and withp belonging to stop band
No. i, thenpm,i is the number of the middle term belongin
to this stop band. The parameterC2 has to been chosen i
each separate case~type of filter, potential strength, etc.! to
give the ~subjectively! best total characteristic. The great
improved effect on the transmission of including the nonl
ear term infp is shown in Fig. 5, with our previously use
BP filter as an example. For the BP filter the focusing of
potential to the middle of the barrier whenfp5pp and the
defocusing whenC2 is included is shown in Fig. 6, wher
also an example of the potential whenfp is randomly cho-
sen is seen. Two more examples of filters where the po
tials are determined by Eqs.~8! and~9! are shown in Fig. 7.
Filters with a pass band at lowk (k,0.05) are the mos
difficult type to obtain, ask→0 always means thatt→0.

The BR filter with the narrowest stop band is obtained
only one periodic term is used to generate the potential. T
is a so-called ‘‘notch filter’’ of which an example could b
seen in Fig. 8. The notch becomes narrower if the widthN of

FIG. 4. The influence on the transmission curve of the BP-fi
shown in Fig. 3 when the potential strength is increased fromV
50.05 toV50.1, while everything else is unchanged. The poten
is shown in the middle of Fig. 6.
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the array is increased and to have as narrow notch as pos
the strengthV of the potential should not be increased ov
the point where the minimum in transition is near zero. T
ripple in the transition seen in Fig. 8 is caused by the pot
tial at the borders. The ripple at the end points (k,0.05 and
k.0.45) could almost completely be removed if the pha
fp is changed from zero to some value (fp5p/22pkp ,

r

l

FIG. 5. The transmission curve of a BP-filter with passba
0.15<k<0.2 when the potential is generated according to Eqs.~8!
and ~9!. The nonlinearity parameter in the determination offp is
C250.8°, while V50.1 andN5512. Also shown are the Fourie

amplitudesuṼ(kp)u of the potential in a relative scale. Note that th
scale ofkp is compressed relative that ofk. This brings out the
scattering of the waves that occur whenukpu52uku. Compare the
transmission with the BP-filter in Figs. 3 and 4 where the potent
have the same relative amplitude characteristics as here. The p
tial is shown at the bottom of Fig. 6.

FIG. 6. The on-site potential,Vn , of the BP-filters, with pass-
band 0.15<k<0.2 andN5512 used as examples in the previo
Figs. The potentials are from top to bottom in the figure related
the parameters used in Figs. 2a, 4, and 5, respectively. To sim
comparison the upper random potential is rescaled so thatV50.1 in
all three cases. The upper two curves are drawn with offsets inVn

of 1.5 and 3 respectively. Notice the quite different spatial appe
ance of the potentials. All three are resulting in the same type
filter, the potential at the bottom with the best characteristics.
5-4
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DESIGN OF FILTERS IN A ONE-DIMENSIONAL . . . PHYSICAL REVIEW E 63 056605
modulo p!. ~This gives a symmetric potential under inve
sion with respect to the middle of the barrier.! All of the
ripple, however, could be removed by the application
some tapering factor on the potential. A technique sometim
used in spectral analysis to remove or reduce the term
discontinuities of sampled data. In example the multiplic
tion of Vn by a Hamming window@6# @i.e., the weighting
factor w(n)50.5420.46 cos(2pn/N)# will remove the entire
ripple in Fig. 8 on the expense of some broadening of
notch. The applying of a tapering factor, however, means
introduction of new components in the Fourier spectrum
the potential. In the other types of filters studied here,
window technique is found not to be applicable, because
the deformation of the initial Fourier spectrum with ‘‘unpr
dictable’’ influence on the transition curve as a result.

III. TRANSMISSION OF WAVE PACKETS

Up to now we have dealt with the transmission coefficie
t of a plane wave as a function of the wave numberk. In a
linear system, the transmission of a wave packetcn with
spectral densityP(k) ~its DFT! is obtained by averaging

FIG. 7. The transmission coefficientt as a function ofk of two
different types of filters when the potentials are generated accor
to Eqs. ~8! and ~9!. ~a! HP-filter with passbandk>0.1, V50.06,
C251.9°, andN5256; ~b! LP-filter with passbandk<0.15, V
50.1, C250.94°, andN5512.
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over all k in the, toward the barrier, incoming packet,

^t&5E uP~k!u2t~k!dkY E uP~k!u2dk. ~10!

If the wave packet has the carrier wave numberkc5k, i.e.,
cn5ucnuei2pkn, the spectral density is concentrated arounk
and we define the transmission coefficient of the wave pac
as t(kc)5t(k)5^t&. With spatially extended and reasonab
shaped wave packets,t(k) is qualitatively the same as that o
a plane wave asP(k) in these cases is strongly localize
aroundkc . With a Gaussian-shapeducnu2 with a width given
by its standard deviations, the also Gaussian-shapeduP(k)u2

has a standard deviationsk'1/(4ps). ~This relation is ex-
act in the continuous limit.! The effect of the averaging is
exemplified in Fig. 9 where, calculated by Eq.~10!, the
transmission of an incoming Gaussian-shaped wave wits
516 is shown. We have in this article preferred to stu
rather short lengths of the barriers for two reasons. First,
a greater challenge to design filters with good total char
teristics with short barriers. Second, when dealing with wa
packets the length of the barrier could be chosen, depen
on the width of the packets, so that the ripple is smoothe

It could be off interest to investigate the effect on t
transmission of wave packets through the barrier, of
added~cubic! nonlinearity in the used model equation. In th
nonlinear case, where the previous method cannot be u
we change to numerical calculations by solving the tim
dependent discrete nonlinear Schro¨dinger equation

i
]

]t
cn52cn112cn211Vncn1aucnu2cn , ~11!

where a is the nonlinearity parameter. The nonlinearity
assumed to exist only in the barrier~i.e., when 1<n<N)
and the wave packet is launched immediately outside

ng

FIG. 8. An example of the transmission curve of a BR-filt
with the narrowest ‘‘stopband’’ for a certain lengthN of an array.
Here only one component withkp50.2 is used when generating th
potential and the parameters arefp50, V50.017, andN5250.
Inserted is an enlargement of a small interval showing the rip
with a periodDk'1/2N50.002, caused by the borders. The figu
is further discussed in the text.
5-5
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BRUNO LINDQUIST PHYSICAL REVIEW E 63 056605
barrier on the left side. To integrate Eq.~11! we use a
method previously found to be very reliable@5,7# and here
the difference, whena50, between the result of Eq.~10!
and by integrating Eq.~11! is negligible~i.e., it would not be
visible in Fig. 9!. An example of the effect of the adde
nonlinearity is shown in Fig. 9 for both a negative and
positive value of the nonlinearity parameter. Only the int
val 0<k<0.25 is shown. In the linear caset(k) is almost
symmetric aroundk50.25, and there would have been pe
fect symmetry if the potential had been antisymmetric. Wh
aÞ0 the symmetry is broken, even with an antisymmet
potential. With every potential, however,t@k,a,V(n)# is a
mirror in k50.25 oft@k,2a,2V(n)#. The reason is that the
time evolution ofucnu2 is unchanged if we make the simu
taneous transformation

k→0.52k, Vn→2Vn , a→2a, ~12!

which, by puttingcn5cnei2pkn, could be seen from Eq.~11!
and its complex conjugate counterpart. There has been m
activity to form an understanding of nonlinear systems. S
for instance, Ref.@8# ~for an introductory review! and Ref.
@9#. An exhaustive description of the influence of the nonl
earity on the transmission of the different ‘‘filters’’ studie
here is difficult to give. The task is worth a further study, b
is beyond the scope of this article. After investigated ma
types of potential barriers, looking for which combinatio
of parameters are leading to increasing/decreasing trans
sion, we have, however, found one common characteri
In regions ofk where (]/]k)t(k)ua50.0 ~i.e., going from a
stop band to a pass band with increasingk!, t(k) is decreased

FIG. 9. The effect of the averaging oft(k) ~valid for a plane
wave! when the incoming wave packet is Gaussian shaped w
standard deviations516, corresponding to a Gaussian shaped
eraging factor uP(k)u2 with standard deviationsk'1/(4ps)
'0.005. The on-site potential is chosen as in Fig. 1~a!, i.e., the first
approximation of a ‘‘BR-filter’’ with stopband 0.15<k<0.2, V
50.1, N564, and random phasesfp . Only the interval 0<k
<0.25 is shown, ast(k) in Fig. 1~a! is almost symmetric around
k50.25. The wave packet is spatial narrow enough to cancel
ripple caused by the borders. With this wave packet also two c
of the effect~further discussed in the text! of an added nonlinearity
are shown. The nonlinearity parametera563 respectively.
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~increased! if a.0(a,0). On the contrary, in regions
where (]/]k)t(k)ua50,0, t(k) is increased~decreased! if
a.0(a,0). The effect on the transmission curve is that
seems to move towards higher~lower! k values whena is
increased~decreased!. This effect, which is exemplified in
Fig. 9, appears for allk in the interval 0,k,0.5 except
‘‘near’’ k50 or k50.5 ~i.e., slowly moving wave packets
with low kinetic energy!. At present we have no valid argu
ment for the reason of these shifts in the transmission cur
We have, however, in some cases examined the local Fo
transform, of the wave packetin the barrier, during the scat
tering process. The observed scattering of the initial Fou
components is witha.0 (a,0) more pronounced toward
lower ~higher! k values. This could give the observed shift
the transmission curve. But, if this asymmetry of the scat
ing is a general fact, is presently unclear. If so, there is s
the open question of the reason for the asymmetry.

IV. CONCLUDING REMARKS

We have shown how to design filters that discrimina
between wave packets depending on their velocities. W
the given examples as guidelines it is possible to design
ters for plane waves with almost any location of the pa
band~s! in the transmission coefficient. The effect of the d
signed filter on a wave packet with known spatial form cou
then quite easily be estimated. However, filters with a p
band down to ‘‘very low’’ velocities are the most difficult to
design as there is always a cut of velocity for energeti
reasons. This type of filter requires low on-site potentials a
therefore a long barrier to get the desired low transition
the stop band. The resulting characteristic of all filters
always a compromise between different wanted features

The effect of an added nonlinearity is that the charac
istics are less predictable, and often the good qualities of
transmission curve are deteriorated. The transmission c
appears to be shifted in thek direction with changed nonlin-
earity.

ACKNOWLEDGMENT

The author would like to thank Rolf Riklund for clarify
ing discussions about physics in general. Financial sup
from the Swedish Natural Science Research Council is a
gratefully acknowledged.

APPENDIX A: THE DISCRETE FOURIER TRANSFORM

The discrete Fourier transform~DFT! and the correspond
ing inverse transform is here defined as

X~k!5
1

N (
n51

N

x~n!e2 i2pkn, 0<k<121/N, Dk51/N.

x~n!5 (
n50

N21

X~k!ei2pkn, k5n/N, 1<n<N,

th
-

e
es
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DESIGN OF FILTERS IN A ONE-DIMENSIONAL . . . PHYSICAL REVIEW E 63 056605
respectively. It is often preferable to think of the Fouri
components in the interval 0.5,k<121/N mapped on the
negative interval20.511/N<k,0.

APPENDIX B: SYMMETRY OF THE TRANSMISSION

We will, by the help of time reversal, show that the tran
mission coefficient is the same for waves coming from
left or right side toward the barrier, independent of the fo
of the potential. In Eq.~2! the plane waves to the left an
right side of the barrier are joined by the linear conditions
the barrier. The joining conditions lead to two linear hom
geneous relations between the coefficientsR0 , R1 , T0 , and
T1 . Hence a matrixM exists such that

S R0

R1
D5S m11 m12

m21 m22
D S T0

T1
D . ~B1!

With the wave incoming from the left,R0 , R1 , andT0 are
the incoming, reflected, and outgoing wave amplitud
while T150. In this case the transmission coefficient is

tL5t5
uT0u2

uR0u2
51/um11u2 ~B2!

and the reflection coefficient isr L5r 5uR1u2/uR0u2

5um21u2/um11u2.
Current conservationt1r 51 then gives

um11u22um21u251. ~B3!

The time-reversed solution corresponding to Eq.~2! is ~with
Fn5cn* )

Fn5R0* e2 i2pkn1R1* ei2pkn, n<1,

2Fn112Fn211VnFn5EFn , 1<n<N.

Fn5T0* e2 i2pkn1T1* ei2pkn, N<n.
05660
-
e

-

,

Now if R1* ei2pkn is incident from the left,R0* , and T1* is
defining the reflected and outgoing wave amplitudes, wh
T0* 50. Comparing with Eqs.~2! and ~B1! we get

S R1*

R0*
D 5S m11 m12

m21 m22
D S T1*

T0*
D

or, equivalently,

S R0

R1
D5S m22* m21*

m12* m11*
D S T0

T1
D .

This has the same form as Eq.~B1! and hence the two32
matrices are equal, i.e.,m115m22* andm125m21* . This gives

M5S m11 m12

m12* m11*
D ,

and with Eq.~B3! that det(M)51. The inverse can thus b
written as

M215S m11* 2m12

2m12* m11
D .

From Eq.~B1! we get

S T0

T1
D5S m11* 2m12

2m12* m11
D S R0

R1
D .

Now let T1e2 i2pkn be a wave incident from theright, T0 ,
andR1 defining the reflected and outgoing wave amplitud
while R050. In this case the transmission coefficient is

tR5
uR1u2

uT1u2 51/um11u2,

which is equal totL , the transmission coefficient when th
wave is incident from theleft in Eq. ~B2!.
.
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