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Design of filters in a one-dimensional tight-binding system
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We show how to design one-dimensional systems that in the transmission through a finite potential barrier,
in a predetermined way, discriminate between monochromatic waves depending on their wave number. These
systems, described by the on-site tight-binding equation, act as filters of different types, with adjustable pass
and stop bands. The use of these filters for discrimination of linear wave packets depending on their different
velocities is illustrated, and we also comment on the influence of an added nonlinearity.
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[. INTRODUCTION into account the spectral density of a wave packet. But the
scattering atk,|=2|k| is by far of most importance, if the
We consider here the on-site tight-binding equation withextension of the lattice is infinite and there are not too large

constant nearest-neighbor hopping values of the on-site potential. We have used this criterion in
the construction of different filters adding Fourier compo-
“Ynr1— Un—1t Vot =E¢hy, (1) nentsV(k,) to the lattice on-site potential with amplitudes

and phases to give the best total effect on the transmission

wheren is the site indexV,, is the on-site potential, and the curve. If we, however, deal with the transmission through a
hopping integral is normalized te-1. This equation is barrier the borders play an essential role. Too step borders at
equivalent to a discretized time-independent Sdimger the entrance and the exit sides of the barrier lead to large
equation. This ubiquitous model and the connection betweereflections at the borders, resulting in interference, giving
the nature of the eigenstates, the spectrum of allowed enepeaks and valleyéipple) in the transmission curve. With a
gies, the physical properties, and the choic&phs random  barrier size ofN sites, this ripple has the periatk~ 1/2N
[1] or deterministic aperiodif2] have been most thoroughly (cf. the Ramsauer effecand is not desirable, as we want as
studied. In this paper we will study the possibility of con- flat characteristic as possible in the stop and pass bands. So
structing a system obeying E(].) that act as a discriminator the wish is to have smooth borders if possible. In Sec. Il the
of Bloch waves specified by certain wave numblersirst  transmission of a plane wave is first derived and then suc-
the construction of a band-reje@R) filter with low trans-  cessive improvements in the construction of the barrier are
mission in an intervak,;<k=<k, (the stopbandand high investigated. The effects on wave packets are dealt with in
transmission outside this intervéthe passbandiswill be  Sec. IlI, where the influence of an added nonlinearity is also
demonstrated. Also the transmission curve of a filter with theconsidered. We will in the following use the terminology
inverse characteristic, a band-pdB®) filter, as well as fil-  that the “left” is toward the lown side.
ters with low-pasgLP) and high-pasgHP) characteristics
will be shown. The discrimination of wave packets depend- Il. STATIONARY TRANSMISSION
ing on their different velocities is illustrated.

The idea of constructing a filter of a certain type is based The system that will be considered here is described by
on the reflection of an initial plan wavee'?"™*"~Ed) py the  EQq. (1), and consists of a finite aperiodic cha potential

Fourier component¥(k,) of the lattice on-site potential. barrier when n<N), embedded in an infinite periodic
(The definition of the discrete Fourier transform DFT, could¢hain withV,=0. We will first study the problem of station-
be found in the Appendix A.HereE, is the energy of the &Y transrmssmn throu.gh this barrier, Whgn the wave func-
wave, whilek, denotes the lattice wave number. The contri-ions outside the barrier are taken as single Bloch waves
bution of k, to the real potentiaV/, is (neglecting the nor- specified by a wave numbg&r By stationary transmission we

o ~ s ) here simply mean that the probability,|2 and the probabil-
malization) the sum ON(kp.) and V(. kp) [an asterisk de- ity current are time independent in contrast to the case when
notes the complex conjugate, it naturally holds that

~ s . the transmission of a wave packets is studied. VRigh R4,
V(—kp)=V*(kp)]. Pure Bragg reflectionki——k) occurs  anq T, defining the incoming, reflected, and outgoing wave

when |ky|=2]k|. At this condition the current[J  ampiitudes, respectively, we have the following relations:
=2 Im(g_,)] is periodically changing sign with the pe-

riod o< 1/V(k,)|. With increasing difference betwednand Yn=Roe'?™ "+ R 127N, n<1,

the resonance criterion more and mérealues are involved

in the scattering process, even if there is only one initial —ns1— Y1+ Vatn=E¢,, 1sn<N, 2
plane wave and only onle, value in the Fourier expansion

of the potential(a cosine-formed potentjalWith morek,, Yn=Toe?™ N+ T,e7127Kn  N=<n,

values the problem is in general analytically not solvable
even if the potential is periodic. Still worse if one has to takewhereT,;=0 in the present context.
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The relationE= —2 cos(27K) is valid for a Bloch wave 1 T

outside the barrier and is used also inside the barrier, which
is motivated by the infinite chain and that E4) is valid for (@)
all n. In the usual way the transmission coeffici¢ris de- 081
fined as

Tol? o

= t
t R (3
0.4¢

The complex wave functiog gives by Eq.(1) rise to a real
four-dimensional mapping. This mapping can be reduced to

a two-dimensional ong3,2] by the use of current conserva- 0.2r
tion [J=2 Im(y, ) =2|T,J? sin(27K)]. By defining the two
guantities 0 ‘
0 0.1 0.2 0.3 0.4 0.5
ol , Re(gnin_y) @ k
"Tee N ITol* 7 1 W‘NVW I AR I
the reduced mapping will take the form 08 (b)
1,
Xn_1=—/[ya+sir?(27k)], Vn,
Xn 0.6-
t
Vao1=—Ynt+Xn-1(Vh_1—E), 2<ns=N+1, (5)
0.4}
where the initial conditions argy, =1, yy.1=C0S(27K).
By iterating Eq.(5) from the output end to the input end of
the barrier and using Eq&) and(4) the transmission coef- 0.2
ficient is by Eq.(3) obtained as
4 sirf(27k) % 01 o2 03 04 05
(6) k

B S Xo— 2y, cod 2mk) + 2 Sirf(27K) °

FIG. 1. The transmission coefficienés a function ok with the

First three comments on the general characteristidglof on-site potential chosen according to E@) but with only 0.3

(1) An inspection of Eq(6) reveals that(k) is unaffected by ~<k,=<0.4 included in the summation, i.e., a first approximation of a

the simultaneous substitutidk—0.5—k, V,— —V,. That  BR-filter with stopband 0.18k<0.2. The RMS valué/=0.1 and

is, V,— —V,, mirror t(k) in k=0.25.(2) The transmission N=64.(a) One single realization with random phasgs. (b) The

curve is the same independent of which side of the barriefesult after averaging over 100 realizations with randgm

the wave is coming from. This is due to the invariance of the

Schralinger equation under time reverséhee Appendix B one component in the DF{whereas the othey values cor-

for a derivation of this characteristid3) From the preceding respond to two componentswe, however, takedy

two characteristics it follows thaik) is symmetric around = * /2 and Ay,=A/2 to get the same amplitude in the

k=0.25, if the potential is antisymmetric under inversion DFT. Note that the constant contribution frop+=0 is ex-

with respect to the middle of the barrieV (= —Vy,1-p). If  cluded from Eq.(7), giving (V,,)=0. In what follows the

N is odd, the middle lattice site must have zero on-site popotential is normalized to have the root mean squame)

tential. In the following, we use this definition of an “anti- value V=/(V2). This normalization means that, ¥ con-

symmetric” potential. stant, the amplitude of any component in E@ changes

If we want to design the real, of the barrier in the way approximately ag\>1/\/N. The Fourier transform method to
thatall components of its discrete Fourier transform have theybtain the potential has recentf#] been used to give a
same amplitudéexcept for the constant opehis is done as  power law relationA2=1/k? . It was found that for<2 all
one-electron states are localized, but there is a finite range of
energy values with extended eigenstatesdor?2.

In Fig. 1 the first illustrative design of a band-reject filter
with stop band 0.15k=<0.2 is shown. From EdZ7) only the
where the upper limip=N/2 (for N even or (N—1)/2 (for ~ valuesk,=2k for k values in the stop band are included in
N odd). Except for the highest componept=N/2 (for N  the summation. With changed values of the paramdters
even the independent random phasgs are uniformly dis- and V the complimentary bandpass filter with passband
tributed in the interva[0O, 27] and the amplitudes are con- 0.15<k=<0.2 is shown in Fig. 2. Here the corresponding
stant, i.e.A,=A. Whenp=N/2, which corresponds to only values ofk, are excluded from the summation. Figurda)1

7pn

[N/2] 5
=

Vo= 2, A,sin
p=1

, ke=pIN. (D

056605-2



DESIGN OF FILTERS IN A ONE-DIMENSIONA . .. PHYSICAL REVIEW E 63 056605

1 — - "
(a) V} ﬂ f\ (Vv
0.8f il 0.8¢
‘ ‘;‘i
0.6 () I | 0.6
t il | il t
il
0.4r 1 M . 0.4H M(Y\
0.2r ‘ i : 1 0.2 BR ——
| BP —
o—M . 0 ‘ ‘ A ‘ L L
0 01 02 03 04 05 0 0.1 0.2 0.3 0.4 05
B . : .
! ‘(b) FIG. 3. The transmission curve of a BR-filtéBP-filer) with
stopband(passband0.15<k=<0.2. The potential is generated ac-
0.8- 1 cording to Eq.(8) and the different phases chosen @s=p.
Compare with Fig. 12) where the parameteis=0.1 (0.05 and
N=64 (512 are the same as here.
0.6
t feature actually is better studied in potentials with more
0.4k | separated peaks in the Fourier transform of the potential, or
' even with one single Fourier component at a tintehe re-
lation holds ift not too close ta=0 ort=1, nor must the
0.2 0.3 024 1 wave number be close to=0 (or k=0.5). These conditions
on k mean that the currerdtecsin(2#K), or if a wave packet
0 e, the kinetic energy5] of the packet, must be large compared
0 0.1 0.2 0.3 04 0.5 to the on-site potential. If not so the case, the wérewave

k packej is scattered more independently by the different

FIG. 2. The transmission coefficienas a function ok with the  (local) V,; and has no possibility to “sense” thidobal char-

potential chosen according to E€) but with 0.3<k,<0.4 ex-  acteristics expressed by the differgl(ﬂ(p).

cluded from the summation, i.e., a first try to design a BP-filter with A petter design of the potential in the barrier is thus
passband 0.55k<0.2. The RMS valua/=0.05 andN=512. (a)

One single realization with randogh, . The potential could be seen [N/2] 27pn p
at the top of Fig. 6(b) The result after averaging over 1000 real- V.= Z Ap sin(—+ ¢p|sin _)' ko=p/N, (8)
izations with randomy,, . Inserted: An enlargement of a small in- p=1 N N

terval showing the ripple caused by the borders. ) ) o
with the different deterministic phases chosendgs=pm.

and 2a) show the large fluctuation in the transmission curveThis choice of phases makes the potential more focused to
in single realizations; even with some peaks with nearly perthe middle of the barriefi.e., on the average larger values of
fect transmission in the supposed stop band in Rig. Zhat  |V,| in this region and makes the borders become more
is, the random phases, are not good choices although the smooth and hence cause a reduction of the ripple. As a side
averaging over several realizations in Fig¢b)land Zb) effect the potential in the barrier becomes almost antisym-
show some desired BR and BP characteristics, respectivelynetric, with the result that the transmissiofk) becomes
But, of course, filters cannot rely on averaging; they have te&ven more symmetric arourkd=0.25 than with independent
work in every single realization. The averaged characteristiccandom phaseg,. A linear dependen,=pC,, with C;
exhibit some interesting featureSirst, the ripplecaused by # m, just change the point of focusing;, and does not
the borders is clearly seen in Fig(b]l, while the ripple in  change the transmission curve drastically as long;ds not

Fig. 2(b) has a smaller amplitude and the average needs to beear the borders. Figure 3 demonstrates the effect on the
taken over more realizations to become clearly visible. Withtransmission curves of the BR and BP filters shown in Figs.
shorter length of the barriglhere N=64 andN=512, re- 1 and 2 when the potential is given by E&) and the dif-
spectively the influence of the borders generally increases aterent phases byb,=p. In these single realizations, the
the expense of the bullSecondthe overall transmission in  most remarkable improvement in the characteristics are per-
the different bands is not at all as flat as desired, i.e., th@aps that the ripple caused by the borders is greatly removed
influence ort(k) depends oi, even if all amplitudes\, are  from the shorter BR filter and in the flattening of the BP filter
equal. In large intervals ot and k the relationt(ky/2)  characteristic.

=1/ sin(mky) is valid. This is reflected in the stopband of the ~ When we want to proceed to improve the filter character-
BP filter and in the passband of the BR filt@ithough this istics, we have to compromise between different qualities
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FIG. 4. The influence on the transmission curve of the BP-filter ~FIG. 5. The transmission curve of a BP-filter with passband
shown in Fig. 3 when the potential strength is increased fiom 0.15<k<0.2 when the potential is generated according to Eg)s.
=0.05 toV=0.1, while everything else is unchanged. The potentialand (9). The nonlinearity parameter in the determinationdgf is
is shown in the middle of Fig. 6. C,=0.8°, whileV=0.1 andN=512. Also shown are the Fourier

amplitudesN(kp)| of the potential in a relative scale. Note that the
such as highlow) transition in the pass bandstop bandg scale ofk, is compressed relative that &f This brings out the
maximally flat pass bands, and steep sloops(k) in the  Scattering of the waves that occur whig|=2[k|. Compare the
transition between pass bands and stop bands. To decredthsmission with th_e BP-flItgr in Figs. 3 anqzl_where the potentials
the transmission in the stop bands, for a fixed length of thé?av'e the same relative amplltud_e characteristics as here. The poten-
barrier, we want to increase the strenttof the potential. U2l is shown at the bottom of Fig. 6.
This must be done, in a way that the focusing of the potential o )
to the middle of the barrier is reduced. Otherwise the largefhe array is increased and to have as narrow notch as possible
values of|V,| in this region with increasiny, lead to in-  the strengttV of the potential should not be increased over
creasing interference between theeal potential barriers. the point where the minimum in transition is near zero. The
This, e.g., tends to deteriorate the transmission in the pad#Pple in the transition seen in Fig. 8 is caused by the poten-
bands.(In Fig. 4 the effect of doubling o¥ is shown for the tial at the borders. The ripple at the end poiris<0.05 and
BP filter in Fig. 3) A way to control the amount of focusing k>0.45) could almost completely be removed if the phase
of the potential is to introduce a nonlinear term in the choice®p IS changed from zero to some valugy= 7/2— k,
of the different phases. By numerical investigation of differ-
ent forms of¢,(p) we have found a simple quadratic form 35

best suited in most cases: 3WM“WW~MWWWWMWMMNNWM
¢p: pm+Cy(p— pm,i)zy 9 2,51

whereC, is a constant, and witp belonging to stop band i

No. i, thenpy,; is the number of the middle term belonging 15 ——— o

to this stop band. The paramet€ has to been chosen in Vi
each separate casigpe of filter, potential strength, ejco
give the (subjectively best total characteristic. The greatly 05l

improved effect on the transmission of including the nonlin-
ear term ing,, is shown in Fig. 5, with our previously used OWWWWMWMWWW’WMAMW\M
BP filter as an example. For the BP filter the focusing of the
potential to the middle of the barrier whe,=p7 and the 05, 100 200 300 400 500
defocusing wherC, is included is shown in Fig. 6, where n
also an example of the potential whes is randomly cho-

sen is seen. Two more examples of filters where the poter,

t"?‘ls are (_jetermlned by Eqe8) and(9) are shown in Fig. 7. Figs. The potentials are from top to bottom in the figure related to
Filters with a pass band at lok (k<<0.05) are the most he parameters used in Figs. 2a, 4, and 5, respectively. To simplify
difficult type to obtain, ak—0 always means that-0. comparison the upper random potential is rescaled so/hat. 1 in

The BR filter with the narrowest stop band is obtained |fa|| three cases. The upper two curves are drawn with offset, in
only one periodic term is used to generate the potential. Thigf 1.5 and 3 respectively. Notice the quite different spatial appear-
is a so-called “notch filter” of which an example could be ance of the potentials. All three are resulting in the same type of
seen in Fig. 8. The notch becomes narrower if the widitif  filter, the potential at the bottom with the best characteristics.

FIG. 6. The on-site potentiaV, , of the BP-filters, with pass-
nd 0.15<k=<0.2 andN=512 used as examples in the previous
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! T T FIG. 8. An example of the transmission curve of a BR-filter

r i with the narrowest “stopband” for a certain lengkhof an array.
o8l b) | Here only one component with,=0.2 is used when generating the

potential and the parameters a¢g=0, V=0.017, andN=250.
Inserted is an enlargement of a small interval showing the ripple,

0.6 with a periodAk~1/2N=0.002, caused by the borders. The figure
t is further discussed in the text.
0.4 over allk in the, toward the barrier, incoming packet,
o ' <t>=f |P<k)|2t<k>dk/ J [PUOPdk. (10
0 W 0x " os If the wave packet has the carrier wave numkgrk, i.e.,
0 01 02 K 03 ‘ ’ Yn=|1,€?™", the spectral density is concentrated aroknd

and we define the transmission coefficient of the wave packet
FIG. 7. The transmission coefficientis a function ok of two ast(ke) =t(k)={(t). With spatially extended and reasonable
different types of filters when the potentials are generated accordinghaped wave packetgk) is qualitatively the same as that of
to Egs.(8) and (9). (a) HP-filter with passban&=0.1,V=0.06, 5 plane wave a®(k) in these cases is strongly localized
02:1.9‘), andN=256; (b) LP-filter with passband<s0.15, V aroundkc. With a Gaussian-shap¢¢n|2 with a width given
=0.1,C,=0.94%, andN=512. by its standard deviatiom, the also Gaussian-shaplét(k)|?

o ) ) ) has a standard deviatian~1/(4wo). (This relation is ex-
modulo ). (This gives a symmetric potential under inver- gt i the continuous limit. The effect of the averaging is

sion with respect to the middle of the barrjeAll of the exemplified in Fig. 9 where, calculated by E€LO), the
ripple, however, could be removed by the application Oftransmission of an incoming Gaussian-shaped wave with
some tapering factor on 'the potential. A technique sometimes. 165 js shown. We have in this article preferred to study
used in spectral analysis to remove or reduce the terminghiner short lengths of the barriers for two reasons. First, it is
discontinuities of sampled data. In example the multiplica-y greater challenge to design filters with good total charac-
tion of V,, by a Hamming window[6] [i.e., the weighting  teristics with short barriers. Second, when dealing with wave
factorw(n) =0.54-0.46 cos(zm/N)] will remove the entire  yackets the length of the barrier could be chosen, depending
ripple in Fig. 8 on the expense of some broadening of the), the width of the packets, so that the ripple is smoothed.
notch. The applying of a tapering factor, however, means the |; couid be off interest to investigate the effect on the
introductiop of new components in the Fourier. spectrum ofyransmission of wave packets through the barrier, of an
the potential. In the other types of filters studied here, thgyqded(cubic) nonlinearity in the used model equation. In the
window technique is found not to be applicable, because ofonlinear case, where the previous method cannot be used,
the deformation of the initial Fourier spectrum with “unpre- e change to numerical calculations by solving the time-

. d
lll. TRANSMISSION OF WAVE PACKETS T ERVAVAS VAN CE)

Up to now we have dealt with the transmission coefficient
t of a plane wave as a function of the wave numkein a  where « is the nonlinearity parameter. The nonlinearity is
linear system, the transmission of a wave packetwith assumed to exist only in the barriére., when n=<N)
spectral densityP(k) (its DFT) is obtained by averaging and the wave packet is launched immediately outside the
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(increasedl if a>0(a<0). On the contrary, in regions
where @/9k)t(K)|,-0<0, t(k) is increaseddecreasedif
a>0(a<0). The effect on the transmission curve is that it
seems to move towards high@ower) k values whena is
increased(decreased This effect, which is exemplified in
Fig. 9, appears for alk in the interval 0<k<0.5 except
“near” k=0 or k=0.5 (i.e., slowly moving wave packets
with low kinetic energy. At present we have no valid argu-
ment for the reason of these shifts in the transmission curves.
We have, however, in some cases examined the local Fourier
transform, of the wave packet the barrier, during the scat-

0.8r

0.6r

0.4r

plane wave

02 wave packet tering process. The observed scattering of the initial Fourier
*=-3 © components is withh>>0 (a«<<0) more pronounced toward
0 Gt i : ‘ lower (highep k values. This could give the observed shift in
0 0.05 0.1 0.15 0.2 0.25

K the transmission curve. But, if this asymmetry of the scatter-
ing is a general fact, is presently unclear. If so, there is still
FIG. 9. The effect of the averaging ofk) (valid for a plane  the open question of the reason for the asymmetry.
wave when the incoming wave packet is Gaussian shaped with
standard deviatiowr= 16, corresponding to a Gaussian shaped av-
eraging factor |P(k)|? with standard deviationo,~1/(470) IV. CONCLUDING REMARKS

~0.005. The on-site potential is chosen as in Fi@,li.e., the first We h h h desian fi hat discrimi
approximation of a “BR-filter” with stopband 0.55k<0.2, V e have shown how to design filters that discriminate

=0.1, N=64, and random phases,. Only the interval <k between wave packets depending on their velocities. With
<0.25 is shown, as(k) in Fig. 1(a) is almost symmetric around the given examples as gwdellnes it is poss@mle to design fil-
k=0.25. The wave packet is spatial narrow enough to cancel théer's for plane waves with almost any location of the pass
ripple caused by the borders. With this wave packet also two casda@nds) in the transmission coefficient. The effect of the de-
of the effect(further discussed in the txof an added nonlinearity ~ signed filter on a wave packet with known spatial form could
are shown. The nonlinearity parametes + 3 respectively. then quite easily be estimated. However, filters with a pass
band down to “very low” velocities are the most difficult to
barrier on the left side. To integrate E(L1) we use a design as there is always a cut of velocity for energetical
method previously found to be very reliald,7] and here reasons. This type of filter requires low on-site potentials and
the difference, whenv=0, between the result of E¢10) therefore a long barrier to get the desired low transition in
and by integrating Eq(11) is negligible(i.e., it would not be  the stop band. The resulting characteristic of all filters is
visible in Fig. 9. An example of the effect of the added always a compromise between different wanted features.
nonlinearity is shown in Fig. 9 for both a negative and a The effect of an added nonlinearity is that the character-
positive value of the nonlinearity parameter. Only the inter-istics are less predictable, and often the good qualities of the
val 0<k=0.25 is shown. In the linear ca$ék) is almost transmission curve are deteriorated. The transmission curve
symmetric arounk=0.25, and there would have been per-appears to be shifted in thedirection with changed nonlin-
fect symmetry if the potential had been antisymmetric. Whergarity.
a#0 the symmetry is broken, even with an antisymmetric
potential. With every potential, howevet,k,a,V(n)] is a

mirror in k=0.25 oft[ k,— «,—V(n)]. The reason is that the ACKNOWLEDGMENT
time evolution of| ¢,/ is unchanged if we make the simul-  The author would like to thank Rolf Riklund for clarify-
taneous transformation ing discussions about physics in general. Financial support
from the Swedish Natural Science Research Council is also
k—=0.5-k, Vp—=—Vq, a=—a, (12 gratefully acknowledged.

which, by puttingy, = c,e'?>€", could be seen from Eq11)

and its complex conjugate counterpart. There has been much\ppPENDIX A: THE DISCRETE FOURIER TRANSFORM
activity to form an understanding of nonlinear systems. See,

for instance, Ref[8] (for an introductory reviewand Ref. ~ The discrete Fourier transfor(®FT) and the correspond-
[9]. An exhaustive description of the influence of the nonlin-iNg inverse transform is here defined as

earity on the transmission of the different “filters” studied

here is difficult to give. The task is worth a further study, but 1 N

is beyond the scope of this article. After investigated many X(k)= — E x(n)e 2™ 0<k=<1-1/N, Ak=1/N.
types of potential barriers, looking for which combinations Nn=1

of parameters are leading to increasing/decreasing transmis-

sion, we have, however, found one common characteristic. N—1

In regions ofk where @/dk)t(k)|,-o>0 (i.e., going from a x(n)= z X(k)ei2™n k=p/N, 1<n=<N

stop band to a pass band with increadihg (k) is decreased =0 ' ' '
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respectively. It is often preferable to think of the Fourier Now if R} e'27" is incident from the leftRY , and T¥ is
components in the interval 08k<1—1/N mapped on the defining the reflected and outgoing wave amplitudes, while
negative interval- 0.5+ 1/N<k<O0. T4 =0. Comparing with Eqs(2) and (B1) we get

APPENDIX B: SYMMETRY OF THE TRANSMISSION (R’I ) _ ( M1y mlz) ( TI)
* | T *
We will, by the help of time reversal, show that the trans- Ro Mo Mo/ | To
mission coefficient is the same for waves coming from theor, equivalently,
left or right side toward the barrier, independent of the form
of the potential. In Eq(2) the plane waves to the left and Ro m3, M\ (T,
right side of the barrier are joined by the linear conditions in R ): N « 1T )
1 my, my;/\ 1

the barrier. The joining conditions lead to two linear homo-

geneous relations between the coefficidRgs Ry, T, and
T,. Hence a matriM exists such that

Ro) le) (To)
Mmoo Tl ‘

Ry
With the wave incoming from the lefR,, R, and T, are

(B1)

( My
My

the incoming, reflected, and outgoing wave amplitudes

while T;=0. In this case the transmission coefficient is

. |TO|2_ 2
t =t= W = 1/| m11| (BZ)
0
and the reflection coefficient isr =r=|R;|%/|Ry|?
=[myy| ?/|myy|?.

Current conservatiob+r=1 then gives
My ®—[myy?=1. (B3)

The time-reversed solution corresponding to Ej.is (with
®,= lﬂ:)
(I)n: Rioc e*i2ﬁkﬂ+ R?I_( eiZﬂ'kn, n< 1,

_q)n+l_q)nfl+vnq)n:Eq)na 1$n$N

&, =TFe 12mkny Trel27kn - N<p,

This has the same form as E@®1) and hence the twe 2
matrices are equal, i.em;,=mj3, andm;,=m3,. This gives

M ( My m12>
- * *x |
My, My

and with Eq.(B3) that detM)=1. The inverse can thus be
tvritten as

M_l—( mi; _m12)
—my My )
From Eq.(B1) we get
(TO)_ mi  —mg (RO)
T —mp  my Ry

Now let T;e~ 27" be a wave incident from theght, Ty,
andR; defining the reflected and outgoing wave amplitudes,
while Ry=0. In this case the transmission coefficient is

|Ry|?
tR=W=1/| my4/?,

which is equal tat, , the transmission coefficient when the
wave is incident from théeft in Eq. (B2).
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